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ABSTRACT

The GLIMMER system for microbial gene identification
finds ~97–98% of all genes in a genome when
compared with published annotation. This paper
reports on two new results: (i) significant technical
improvements to G LIMMER that improve its accuracy
still further, and (ii) a comprehensive evaluation that
demonstrates that the accuracy of the system is
likely to be higher than previously recognized. A
significant proportion of the genes missed by the
system appear to be hypothetical proteins whose
existence is only supported by the predictions of
other programs. When the analysis is restricted to
genes that have significant homology to genes in
other organisms, G LIMMER misses <1% of known
genes.

INTRODUCTION

Accurate microbial gene identification is becoming ever more
important with the increasing rate of whole genome
sequencing projects. In the past year alone, eight new bacterial
and archaeal genomes have appeared, and the pace continues
to accelerate. Each new genome contains thousands of new
genes, all of which are deposited into public databases. These
genes then become the basis for much further research into the
biology of these organisms, and their sequences are used for
further biological study. For work such as microarray analysis,
in which specific sequences are arrayed onto a substrate and
used as probes to measure expression levels, the accuracy of
gene predictions is critical. The same point can be made about
knockout experiments, which are an important tool to use in
determining the function of the large numbers of genes whose
function is unknown at the time of publication. Such hypothetical
proteins typically comprise 30–40% of the genes in a newly
sequenced genome.

GLIMMER 1.0 is a computational gene finder that finds 97–98%
of all genes in a prokaryotic genome without any human inter-
vention (1). The system can be quickly and easily trained using
only the genome sequence of interest. The technical under-
pinning of the system is an interpolated Markov model (IMM),

a generalization of Markov chain methods. GLIMMER 1.0 has
been used as the gene finder forBorrelia burgdorferi (2),
Treponema pallidum(3), Chlamydia trachomatis(4) and
Thermotoga maritima(5), and the software is in use at ove
100 laboratories and institutes. Below we describe the algorit
and performance results of GLIMMER 2.0, a gene finder that
incorporates several technical improvements to the GLIMMER

1.0 algorithm. As a result of these improvements, GLIMMER

2.0 has slightly higher sensitivity than GLIMMER 1.0 and is
much better at resolving overlapping gene calls. The lat
property is especially useful for genomes such asDeinococcus
radiodurans, which due to their high GC-content have
numerous long open reading frames (ORFs) that can easily lea
predictions of genes whose boundaries overlap incorrectly.

METHODS AND ALGORITHMS

We begin by briefly reviewing Markov models in the contex
of DNA sequence analysis. We then describe the probabilis
model used in GLIMMER 2.0 to identify regions that are likely
to be genes. We then describe how GLIMMER 2.0 resolves
conflicts when overlapping genes are predicted. The compl
GLIMMER 2.0 system is available from The Institute fo
Genomic Research at http://www.tigr.org/softlab

Markov Models

A Markov chain is a sequence of random variablesXi, where
the probability distribution for eachXi depends only on the
precedingk variablesXi–1, ...,Xi–k, for some constantk. For DNA
sequence analysis, a Markov chain models the probability o
given baseb as depending only on thek bases immediately
prior to b in the sequence. We refer to these precedingk bases
as the context of baseb in the sequence. The most commo
type of Markov chain is a fixed-order chain, in which the entir
k-base context is used at every position. For example, a fix
5th-order Markov chain model of DNA sequences compris
45 = 1024 probability distributions, one for each possible 5m
context. Such fixed 5th-order models have proven effective
gene prediction in bacterial genomes (6,7).

Ideally, larger values fork are always preferable. Unfortunately
because the training data available for building models
limited, we must limitk. In most collections of DNA coding
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sequences, however, there is substantial variability in the
frequency of occurrence of differentkmers.

IMMs are a generalization of fixed-order Markov chains that
combine contexts of different lengths to compute the probability
of baseb. Our formulation allows each context to have a
weight based in part on its frequency; this allows the IMM to
be sensitive to how common a particular oligomer is in a given
genome. In particular, rarekmers should not be used for
prediction; the IMM will ignore these in favor of shorter
Markov chains. On the other hand, some longkmers may occur
very frequently, and for those the IMM can give the longer
context more weight and make a better prediction. These
weights define an interpolated probability distribution that
incorporates information from multiple Markov chains. An
IMM can emulate a fixedkth-order chain simply by setting all
weights to zero except for those associated withk.

Details of how to construct an IMM for sequence data have
been described previously (1). For coding regions, GLIMMER
1.0 builds three separate IMMs, one for each codon position.
[This is known as a 3-periodic Markov model (6).] These
IMMs include 0–8th order Markov chains, as well as weights
computed for every oligomer of eight bases or less that appears
in the training data. These weights and Markov models are
interpolated to produce a score for each base in any potential
coding sequence. The logs of these scores are summed to score
each coding region.

The interpolated context model

Interpolated context models (ICMs) are a further extension of
IMMs. For a given contextC = b1b2 … bk of lengthk, the IMM
in GLIMMER 1.0 computes a probability distribution forbk+1
using as many of the bases immediately precedingbk+1 as the
training data set allows. The ICM is more flexible and can
select any of the bases inC (not just those adjacent tobk+1) to
determine the probability ofbk+1. In general, from a given
context, the ICM will choose approximately the same number
of bases as the IMM. Our motivation for choosing bases other
than those at the end of the context is the fact that in coding
regions the significance of a given base depends strongly on its
position in a codon; e.g. the nucleotide in the third codon
position is sometimes irrelevant to the amino acid translation.

The criterion employed by the ICM to select which bases of
a context C to use is mutual information. The mutual information
between a given pair of discrete random variablesX andY is
defined to be:

wherexi andyj are the values taken by random variablesX and
Y respectively, and P(xi, yj) is the joint probability ofxi andyj
together.

To construct an ICM with context lengthk from a training set
T of DNA sequences, we begin by considering all windows
(i.e. oligomers) of lengthk+1 that occur inT. We let random
variableX1 be the distribution of bases in the first position of
those windows;X2 be the distribution of bases in the second
position; and so on throughXk+1. We then calculate the mutual
information valuesI(X1; Xk+1), I(X2; Xk+1), …, I(Xk; Xk+1), and
choose the maximum. Suppose that maximum isI(Xj; Xk+1).
We then partition our set of windows into four subsets based
on the nucleotide that occurs in positionj in the window.

The same procedure can now be performed again for eac
the four sets of windows. Within each set, the position that h
the highest mutual information with the base at positionk+1 is
chosen. The four nucleotide values at that position induce
further partitioning of the current set of windows into fou
subsets.

This process can be viewed as constructing a tree
positions within context strings. A sample portion of such
tree is shown in Figure 1. The construction is terminated wh
the tree depth reaches a predetermined limit, or when the s
of a set of windows becomes too small to be useful to estim
the probability of the last base position.

Each node in the ICM decomposition tree represents a se
windows that provide a probability distribution for the fina
base position. The root node, which includes all possib
windows, represents a 0th-order Markov model. All oth
nodes give a probability distribution for the final base positio
conditional on a specific set of bases occurring at the positio
indicated on the path to the root from that node.

Note that the IMM used in GLIMMER 1.0 is a special case of
this ICM, namely the case where the base chosen at each l
of the tree is the last available base in the context windo
Thus, when the nearest positions to basebk+1 provide the
strongest evidence for its value, the ICM automatical
chooses them and the result is identical to the IMM. But wh
other bases provide stronger evidence, as is often the case
ICM will choose them instead.

The interpolation mechanism used in the ICM is identical
that used in GLIMMER 1.0. It takes a weighted sum of two
probability distributions, where the weights are determined
the number of training instances used to construct the distribu

I X Y;� � �
i
�

j
P xi yj�� � log

P xi �P(yj� �
P xi yj�� �

-------------------------� �
� �=

Figure 1. Sample ICM decomposition tree. The root position 12 has maximu
mutual information with the final base position 13. Each child of the roo
represents the subset of windows with the indicated nucleotide value
position 12, and indicates the maximum mutual information position for th
subset. Each node is similarly decomposed into children. Note that children
a single node may represent different base positions.
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and its statistical significance as measured by a�2 test. The
only difference is that the ICM interpolation is naturally
viewed as interpolating between the distributions at a parent
and child node in the tree, while the IMM interpolation is
always between distributions obtained using different numbers
of bases at the end of the context window.

The interpolated context model presented here is essentially
a probabilistic decision tree, i.e. a sparse probability distribution
expressed as a decision tree. The tree construction is identical
to constructing classification trees using information gain as
the splitting criteria (8). Classification trees associate a class
label with each leaf node of the tree. The labels in our case are
the four nucleotide values, and our interpolated context model
determines a probability distribution for the base to be
predicted given the context in which it occurs. Probabilistic
decision trees have been designed for other applications (9–11).
In computational biology probabilistic decision trees have
been used for modeling splice site junctions (12) and exon mode-
ling (13).

Resolving overlapping genes

In developing GLIMMER 2.0, a conscious effort was made to
reduce the number of false negative gene predictions at the
expense of a slight increase in the number of false positive
predictions. Upon close examination of GLIMMER 1.0s output,
we learned that occasionally a gene was discarded because its
start codon was positioned too far in the 5	 direction, resulting
in substantial overlap with another gene. GLIMMER 2.0 solves
this problem by incorporating additional rules to resolve such
overlaps.

In GLIMMER 1.0, when two potential genesA andB overlap,
the overlap region is scored. IfA is longer thanB, and if A
scores higher on the overlap region, and if movingB’s start site
will not resolve the overlap, thenB is rejected.

In GLIMMER 2.0, when potential genesA andB overlap, the
overlap region is scored just as in GLIMMER 1.0. The system
attempts to move the locations of the start codons much more
aggressively, as follows. Suppose geneA scores higher, now
four different orientations are considered:

In this case, postponing the start site of eitherA or B does not
remove the overlap. IfA is significantly longer thanB (as deter-
mined by a program parameter), thenB is rejected. Otherwise,
both A and B are called genes, with an annotation that there
was a doubtful overlap.

Only moving the start ofB can resolve the overlap. If it can be
moved, then it is. If not, and ifB is significantly shorter thanA,
thenB is rejected. Otherwise, both are listed as genes, with a
note indicating the overlap. Moving a start codon works as
follows: the system shortens the predicted gene by shifting the
start location to the next available start codon. If this does not
resolve the overlap, it moves the start codon again. This

process continues as long as the resulting gene is longer t
the minimum gene length (an easily adjustable parameter).

Only moving the start ofA can resolve the overlap. SinceA
scores higher, we only try to move it if the overlap is a relative
small fraction ofA’s length. If adjustingA is not successful,B is
rejected.

Both starts can move. We first move the start ofB until the
overlap region scores higher forB. Then we move the start of
A until it scores higher. ThenB again, and so on, until either the
overlap is eliminated or no further moves can be made.

An additional step is taken by GLIMMER 2.0 to help find
genes that previously were missed because the score from
independent probability model was too high. The independ
probability model is used by both versions of the system
compete against the IMMs used to score all six reading fram
its purpose is to serve as a model of non-coding DNA. In ord
to be called a gene, an ORF must score higher than the in
pendent model as well as the other five reading frames. Ge
that were missed due to high scores from this independ
model will fall in between the genes predicted by GLIMMER
1.0. For a target ORF in such regions, GLIMMER 2.0 considers
the scores on subsequences of that ORF as compared to o
overlapping ORFs. If these subsequences receive sufficie
high scores, and if the ORF scores relatively high in relation
the independent model (even though it did not exceed
normal score threshold to be called a gene), then it is adde
the list of prospective genes.

The process of evaluating overlaps in GLIMMER 2.0 is
performed in an iterative fashion in order to avoid rejectin
genes unnecessarily. For example, in the case where ORA
causes ORFB to be rejected, andB in turn causesC to be
rejected, we wish to reject onlyB and not bothB andC. Thus,
we perform the rejection phase in multiple stages, fir
discardingB and then checking again for overlaps.

COMPUTATIONAL METHODS

We analyzed 10 completed microbial genomes:Haemophilus
influenzae(14), Mycoplasma genitalium(15), Methanococcus
jannaschii (16), Helicobacter pylori (17), Escherichia coli
(18), Bacillus subtilis (19), Archaeoglobus fulgidus(20),
B.burgdorferi(2), T.pallidum(3) andT.maritima(5). On each
of the genomes, we ran both GLIMMER 1.0 and GLIMMER 2.0.
All parameters were the defaults, although adjusting the
default settings will improve performance on selecte
genomes. The training data was identical in every case in or
to ensure a fair comparison.

The method of training was as follows: using only th
genome itself as input, we extracted all ORFs longer th
500 bp from each genome. From these long ORFs, only th
that did not overlap other long ORFs were retained; th
produces a set of ORFs that are highly likely to be coding. (T
programs to perform this extraction are included in th
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GLIMMER package; total runtime is <1 min on a standard
desktop PC.) For all genomes in this study, this set contains
more than enough data to train the system accurately.

Next, the IMM training was conducted using the original
GLIMMER 1.0 program and the new, tree-structured ICMs for
GLIMMER 2.0. These models were then used to identify genes
in the complete genome. For all genomes, ranging in size from
0.5 to 4.7 Mb, training GLIMMER 1.0 or GLIMMER 2.0 takes
<1 min on a Pentium 400 PC running the Linux operating
system. The gene finding step takes an additional 1 min or less.

The results of the comparison are summarized in Tables 1–4.
In all 10 genomes, there are only 12 confirmed annotated genes
that GLIMMER 1.0 found that GLIMMER 2.0 did not. In all these
results, we have not discounted gene predictions that fall into
known ribosomal RNA or tRNA regions. Since such regions
are easy to identify independently of GLIMMER, this step
should be a routine part of any annotation process.

A second set of experiments was designed to find the true
accuracy of GLIMMER. In the original study (1), GLIMMER

1.0’s gene calls were compared to the published annotation for
several completed genomes. The results of this study showed
that GLIMMER 1.0 was able to find 97–98% of annotated genes
fully automatically, using neither database searches nor human
intervention; however, published annotation is not 100% accurate.

Therefore the question remains open as to how accurate th
predictions really are. This second experiment is an attemp
answer that question more precisely.

In order to measure accuracy more precisely, we extracte
subset of genes from the published annotation for ea
genome. These subsets include only those genes that h
significant homology to known proteins, as indicated in th
published annotation. Many of these genes have a functio
assignment, but some are homologous to other genes
unknown function (these are sometimes annotated
‘conserved hypothetical’ proteins). We included the latter
the experiment because the existence of homology itsel
very strong evidence that the sequence encodes a pro
Except for the use of only a subset of annotated genes, all o
details of the experiments were the same as for Table 1. T
results of this second comparison are summarized in Table

The results make it clear that GLIMMER is more accurate on
genes confirmed by sequence homology than it is on t

Table 1.A comparison of the number of genes correctly found by
GLIMMER 1.0 and GLIMMER 2.0 for 10 complete genomes

Table 2.The number of genes with database matches found by GLIMMER

1.0 and GLIMMER 2.0 for 10 complete genomes

Database matches include genes that match genes with unknown function,
known as ‘conserved hypotheticals’, as well as genes whose function is
known. (Thanks to Alain Viari for testing GLIMMER on B.subtilis. The
1249 genes listed in the third column forB.subtiliswere selected according to
an even stricter criterion than having a database match; these are the genes
that already had been documented in the literature prior to the completion
of theB.subtilisgenome project.)

Table 3.Differences between the length and GC-content of
genes that are conserved in other organisms versus
‘hypothetical’ genes

The disproportionately small number of conserved genes for
B.subtilis reflects the fact that this set includes only those
genes that were identified experimentally prior to the
completion of the genome sequence.

Table 4.Numbers of genes confirmed by database matches
found exclusively by GLIMMER 1.0, by GLIMMER 2.0, and by
both systems

The columns labeled ‘Additional’ show how many additional
genes are uniquely predicted by each of the two systems
respectively. Thus forH.influenzae, GLIMMER 1.0 predicts
49 genes that GLIMMER 2.0 does not, one of which has database
homology. Likewise, GLIMMER 2.0 predicts 62 genes that GLIMMER

1.0 does not, two of which have database matches. They agree on
1494 (out of 1501) gene predictions with database homology.



4640 Nucleic Acids Research, 1999, Vol. 27, No. 23

.
Fs,
an
he
ted

wo
al
ed
h
by
as
ent
n
e

t the

nts
at
ed.
tic
und
ain

g
nk
remaining genes. For GLIMMER 1.0, sensitivity ranges from
98.4 to 99.7%, with an average of 99.1%. For GLIMMER 2.0,
the range is 98.6–99.8%, with an average of 99.3%. In contrast,
GLIMMER 1.0’s average accuracy on the complete set of
annotated genes for all 10 genomes is 98.1%, and GLIMMER
2.0’s average on those genes is 98.6%.

Table 3 contains a summary of how the ‘confirmed’ (or
conserved) genes differ from the hypothetical genes in the
10 genomes used in this study. On average, the hypothetical
genes are considerably shorter and have ~2% lower GC-content.
These data are consistent with the hypothesis that these hypo-
thetical genes contain a significant number of non-coding
regions that were mistakenly annotated as coding. (For
example, the presence of stop codons alone lowers the average
GC-content of non-coding regions.) Most hypothetical gene
annotations are based primarily on the predictions of compu-
tational systems. The fact that GLIMMER is more accurate on
conserved genes is suggestive that the hypothetical predicted
genes missed by GLIMMER are the result of simple disagree-
ment between two computational gene finders.

In each of the 10 genomes, GLIMMER 2.0 found more
conserved genes than GLIMMER 1.0. Usually the number was
very small, only 1–5 genes for eight of the genomes. However,
the set of conserved genes found by GLIMMER 2.0 was not a
strict superset of those found by GLIMMER 1.0. We intersected
the two sets and compared them in order to identify which
genes were found by both systems and which were found
exclusively by one or the other. These results are shown in
Table 4. As the table shows, for each genome there are 0–4 genes
found by GLIMMER 1.0 and missed by GLIMMER 2.0. There are
three genomes,M.genitalium, M.jannaschiiandA.fulgidus, in
which all conserved genes found by GLIMMER 1.0 are found
also by GLIMMER 2.0. Typically, genes found by GLIMMER 1.0 but
not found by GLIMMER 2.0 are relatively short and score just
below the minimum scoring threshold. For example, in
B.burgdorferi the gene found by GLIMMER 1.0 and not by
GLIMMER 2.0 is a 74-amino-acid ribosomal protein S14
(BB0491). The GLIMMER 2.0 score for this gene was 88, just
below the default threshold value of 90. Such genes could be
included in GLIMMER 2.0’s predictions with suitable parameter
adjustments, although at a cost of additional false-positive
predictions.

In order to demonstrate that GLIMMER 2.0 has a higher sensitivity
than alternative gene-finding methods, we analyzed a recently
sequenced genome,Mycobacterium tuberculosisstrain H37Rv
(21), for which GLIMMER 2.0 was not among the computational
methods used for annotation. Table 5 summarizes the genes
that were found by GLIMMER 2.0 but missed in the original
annotation, and that have detectable homology to a coding
region from another organism. For each of the 13 genes identified,
the table lists the function and identifier of the best hit found by
a BLAST search. Eleven of the genes occur in intergenic
regions in the published annotation of the complete genome,
and the remaining two (those whose closest homologs are
P17996 and Q02541) have relatively small overlaps with
coding sequences annotated as hypothetical. GLIMMER 1.0
finds 11 of these 13 genes, missing those homologous to
P17996 and Q02541.

It is worth noting too that the false-positive rate appears to be
higher for GLIMMER 2.0, as reflected in the fact that the number
of additional genes (not confirmed by database matches)

predicted by GLIMMER 2.0 is higher in nine of the 10 genomes
Because of its revised rules to resolve overlapping OR
GLIMMER 2.0 generally makes more gene predictions th
GLIMMER 1.0 when all parameters are set identically as in t
above-described results. To verify that the additional annota
matches found by GLIMMER 2.0 are not attributable merely to
the greater number of predictions, we compared the t
systems with GLIMMER 1.0’s parameters set so that the tot
additional gene predictions for all 10 genomes match
GLIMMER 2.0. Specifically, we raised the overlap-lengt
parameter, which is the maximum number of DNA bases
which two ORFs can overlap and both still be predicted
genes. The results are shown in Table 6. With this adjustm
GLIMMER 2.0 still finds 99 more annotated genes tha
GLIMMER 1.0, indicating that its predictions are in fact mor
accurate than GLIMMER 1.0. The parameters of either system
can be adjusted to reduce the number of additional genes, a
cost of missing some true genes.

CONCLUSION

In this paper we have described several technical improveme
made in the GLIMMER 2.0 gene-finding system and argued th
the system is more accurate than previously recogniz
GLIMMER 2.0 also can be an effective gene finder for eukaryo
genomes, especially those with a high gene density as is fo
in some parasites. For example, it is being used as the m
gene finder for the parasiteTrypanosoma brucei, the agent that

Table 5.Genes inM.tuberculosisfound automatically by GLIMMER 2.0
with homology to protein sequences from other organisms

All but two (homologous to P15026 and Q02541) of the listed genes are
intergenic with respect to the currently published annotation forM.tuberculosis.
The first three columns list the location of the predicted start and stop
codons and the length in base pairs; if Start > Stop then the codin
sequence is on the reverse strand. The last three columns give the GenBa
accession number, the function of the top hit found by BLAST (23), and
the E-value given by BLAST for that hit. (The E-value is the number of
homologous sequences expected by chance.)
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G.,

.,
causes African sleeping sickness, which currently is being
sequenced at The Institute for Genomic Research. This parasite
has few or no introns and a gene density estimated at 50%. The
IMM scoring method in GLIMMER 1.0 has also been used to
create a eukaryotic gene finder, GLIMMERM, that has been
quite successful in finding genes in the genome ofPlasmodium
falciparum, the malaria parasite (22).
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Table 6.GLIMMER 1.0 accuracy versus GLIMMER 2.0 accuracy with
overlap-length parameter of GLIMMER 1.0 raised to 51

The value 51 was chosen to make the total number of additional genes
found by GLIMMER 1.0 as close as possible to the corresponding number
for GLIMMER 2.0. GLIMMER 2.0 still finds significantly more annotated
genes than GLIMMER 1.0.


	Improved microbial gene identification with G
	The G
	INTRODUCTION
	METHODS AND ALGORITHMS
	Markov Models
	The interpolated context model
	Resolving overlapping genes

	COMPUTATIONAL METHODS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES


